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Abstract

In this paper, we study coherent exciton transport of continuous-time quantum
walks on star graphs. Exact analytical results of the transition probabilities are
obtained by means of the Gram–Schmidt orthonormalization of the eigenstates.
Our results show that the coherent exciton transport displays perfect revivals
and strong localization on the initial node. When the initial excitation starts at
the central node, the transport on a star graph is equivalent to the transport on
a complete graph of the same size.

PACS numbers: 05.60.Gg, 05.60.Cd, 71.35.−y

(Some figures in this article are in colour only in the electronic version)

The problem of coherent and non-coherent transport modeled by random walks has attracted
much attention in many distinct fields, ranging from polymer physics to biological physics,
from solid-state physics to quantum computation [1–4]. The random walk is related to
diffusion models and is a fundamental topic in discussions of Markov processes. Several
properties of random walks, including dispersal distributions, first-passage times and encounter
rates, have been extensively studied [5, 6]. As a natural extension to the quantum world of
ubiquitous classical random walks, quantum walks (QWs) have also been introduced and
widely investigated in the literature [7].

An important application of quantum walks is that they can be used to design highly
efficient quantum algorithms. For example, Grover’s algorithm can be combined with quantum
walks in a quantum algorithm for glued trees which provides an exponential speed up over
classical methods [8, 9]. Besides their important applications in quantum algorithms, quantum
walks are also used to model the coherent exciton transport in solid-state physics [10]. It is
shown that the dramatic nonclassical behavior of quantum walks can be attributed to quantum
coherence, which does not exist in classical random walks.
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There are two main types of quantum walk: continuous-time and discrete-time quantum
walks. The main difference between them is that discrete-time walks require a coin which is
just any unitary matrix plus an extra Hilbert space on which the coin acts, while continuous-
time walks do not need this extra Hilbert space [11]. Apart from this difference, the two
types of quantum walks are analogous to continuous-time and discrete-time random walks in
the classical case [11]. Discrete-time quantum walks evolve by the application of a unitary
evolution operator at discrete-time intervals, and continuous-time quantum walks evolve under
a time-independent Hamiltonian. Unlike the classical case, the discrete-time and continuous-
time quantum walks cannot be simply related to each other by taking a limit as the time step
goes to zero [12]. Both types of quantum walk have been defined and studied on discrete
structures in the market.

Here, we focus on continuous-time quantum walks (CTQWs). Most previous studies
related to CTQWs in the last decade concentrate on regular structures such as lattices, and
most of the common wisdom concerning them relies on the results obtained in this particular
geometry. Exact analytical results for CTQWs are also found for some particular regular
structures, such as the cycle graph [13] and Cayley tree [14]. Exact analytical results
are difficult to get due to the cumbersome analytical investigations of the eigenvalues and
eigenstates of the Hamiltonian.

In this paper, we consider CTQWs on star graphs, and get exact analytical results for the
first time. The star graph is one of the most regular structures in graph theory and represents
the local tree structure of irregular and complex graphs. In mathematical language, a star
graph of size N consists of one central node and N − 1 leaf nodes. All the leaf nodes connect
to the central node, and there is no connection between the leaf nodes. Therefore, the central
node has N − 1 bonds and the leaf nodes have only one bond. As we will show, for such
simple topology, we are able to derive exact analytical results for the transition probabilities.
These analytical results exactly agree with the numerical results obtained by diagonalizing the
Hamiltonian H using the software MATLAB.

The coherent exciton transport on a connected network is modeled by the continuous-time
quantum walks (CTQWs), which are obtained by replacing the Hamiltonian of the system by
the classical transfer matrix, i.e., H = −T [15, 16]. The transfer matrix T relates to the
Laplace matrix by T = −A. The Laplace matrix A has nondiagonal elements Aij equal to
−1 if nodes i and j are connected and 0 otherwise. The diagonal elements Aii are equal
to degree of node i, i.e., Aii = ki . The states |j 〉 endowed with the node j of the network
form a complete, ortho-normalized basis set, which spans the whole accessible Hilbert space.
The time evolution of a state |j 〉 starting at time t0 is given by |j, t〉 = U(t, t0)|j 〉, where
U(t, t0) = exp[−iH(t−t0)] is the quantum-mechanical time evolution operator. The transition
amplitude αk,j (t) from state |j 〉 at time 0 to state |k〉 at time t reads αk,j (t) = 〈k|U(t, 0)|j 〉 and
obeys the Schrödinger equation [17]. Then the classical and quantum transition probabilities
to go from state |j 〉 at time 0 to state |k〉 at time t are given by pk,j (t) = 〈k| e−tA|j 〉 and
πk,j (t) = |αk,j (t)|2 = |〈k| e−itH |j 〉|2 [18], respectively. Using En and |qn〉 to represent the
nth eigenvalue and ortho-normalized eigenvector of H, the classical and quantum transition
probabilities between two nodes can be written as [17, 18]

pk,j (t) =
∑

n

e−tEn〈k|qn〉〈qn|j 〉, (1)

πk,j (t) = |αk,j (t)|2 =
∣∣∣∣∣
∑

n

e−itEn〈k|qn〉〈qn|j 〉
∣∣∣∣∣
2

. (2)
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For finite networks, the classical transition probabilities approach the equal-partition
1/N . However, quantum transport does not lead to equal-partition. πk,j (t) does not decay ad
infinitum but at some time fluctuates about a constant value. This value is determined by the
long time average of πk,j (t) [17, 18],

χk,j = lim
T →∞

1

T

∫ T

0
πk,j (t) dt

=
∑
n,l

〈k|qn〉〈qn|j 〉〈j |ql〉〈ql |k〉

× lim
T →∞

1

T

∫ T

0
e−it (En−El) dt

=
∑
n,l

δEn,El
〈k|qn〉〈qn|j 〉〈j |ql〉〈ql |k〉. (3)

where δEn,El
takes value 1 if En equals El and 0 otherwise. In order to calculate pk,j (t), πk,j (t)

and χk,j , all the eigenvalues En and eigenstates |qn〉 are required. For the star graph, in the
following, we will first analytically calculate the eigenvalues and eigenstates, then give exact
analytical results for the transition probabilities according to the above equations.

For a specific star graph of size N, we label the central node as node 1 while the leaf nodes
are numbered as 2, 3, . . . , N . Because of the centrosymmetric structure of the star graph,
there are only four types of transition probabilities, namely, π1,1(t), π2,1(t) ≡ π1,2(t), π2,2(t)

and π3,2(t) ≡ π2,3(t). Transition probabilities between other nodes belong to these four types.
Therefore, we only consider the four kinds of probabilities listed above. The Hamiltonian of
the star graph can be written as

H = (N − 1)|1〉〈1| +
N∑

i=2

(|i〉〈i| − |1〉〈i| − |i〉〈1|). (4)

The eigenvalues of the Hamiltonian have three discrete values: E1 = E2 = · · · = EN−2 =
1, EN−1 = 0 and EN = N [19]. One set of eigenstates {|vi〉} (i = 1, 2, . . . , N) corresponding
to the eigenvalues is |vi〉 = |i + 2〉 − |2〉 (i = 1, 2, . . . , N − 2), |vN−1〉 = ∑N

i=1 |i〉 and
|vN 〉 = ∑N

i=1 |i〉−N |1〉. However, this set of eigenstates is not orthogonal (〈v1|v2〉 �= 0, etc);
we use the Gram–Schmidt process [20] to orthogonalize this set of eigenstates. The Gram–
Schmidt algorithm is a method for orthogonalizing a set of vectors in an inner product space
[21], and the new orthogonal vectors {|v′

i〉}(i = 1, 2, . . . , N − 2) are given by the following
formula:

|v′
i〉 = |vi〉 −

i−1∑
j=1

〈vi |v′
j 〉

〈v′
j |v′

j 〉
|v′

j 〉, (5)

where |v′
1〉 = |v1〉 is applied in the iterative process [20, 21]. According to the above equation,

we obtain

|v′
i〉 =

⎧⎪⎨
⎪⎩

|i + 2〉 − 1

i

i+1∑
j=2

|j 〉, i = 1, 2, . . . , N − 2

|vi〉, i = N − 1, N.

(6)

The above new eigenstates {v′
i〉} are not normalized (i.e., 〈v′

i |v′
i〉 �= 1, etc). After some

algebraic calculations, we get the orthonormal basis {|qi〉} as follows:
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|qi〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
i

i + 1
|i + 2〉 −

√
1

i(i + 1)

i+1∑
j=2

|j 〉, i = 1, 2, . . . , N − 2

√
1/N

N∑
j=1

|j 〉, i = N − 1

1√
N(N − 1)

N∑
i=1

|i〉 −
√

N

N − 1
|1〉, i = N.

(7)

One can easily prove that {|qi〉} is also a set of eigenstates of the Hamiltonian (i.e.,
H |qi〉 = Ei |qi〉,∀ i). {|qi〉} forms an orthonormal and complete basis satisfying 〈qi |qj 〉 = δij

and
∑

j |qj 〉〈qj | = 1. Therefore, we can use this set of eigenstates {|qi〉} to calculate the
transition probabilities in equations (1), (2) and (3).

Substituting the orthonormal basis of equation (7) into equation (2), we get π1,1(t) and
π2,1(t) as follows:

π1,1(t) = N2 − 2N + 2

N2
+

2(N − 1)

N2
cos Nt. (8)

π2,1(t) = 2

N2
− 2

N2
cos Nt. (9)

For π2,2(t) and π3,2(t), the calculation is analogous, but the expressions are cumbersome:

π2,2(t) = 1

N2(N − 1)2
[(N4 − 4N3 + 5N2 − 2N + 2) + (2N3 − 6N2 + 4N) cos t

+ (2N2 − 4N) cos(N − 1)t + (2N − 2) cos Nt], (10)

π3,2(t) = 2

N2(N − 1)2
[(N2 − N + 1) + (N − N2) cos t − N cos(N − 1)t

+ (N − 1) cos Nt]. (11)

Other transition probabilities can also calculated, but they have the same expressions as
equations (8)–(11). For instance, π4,2(t) has the same analytical form as π3,2, which is
consistent with our intuition. Analogously, we can get the long time averages of the transition
probabilities

χ1,1 = (N2 − 2N + 2)/N2

χ2,1 = 2/N2

χ2,2 = (N4 − 4N3 + 5N2 − 2N + 2)/N2/(N − 1)2

χ3,2 = 2(N2 − N + 1)/N2/(N − 1)2.

(12)

The transition probabilities depend on the size of the graph. In the thermodynamic limit of
the infinite network N → ∞, the transport displays high localizations on the initial position,
i.e., χi,j ≈ δi,j . In contrast, for the classical transport modeled by continuous-time random
walks, the transition probabilities do not show any oscillation and approach the equal-partition
1/N at long times [19]. According to equation (1), the four-type transition probabilities can
be written as

p1,1(t) = 1/N + e−Nt (N − 1)/N

p2,1(t) = 1/N − e−Nt/N

p2,2(t) = 1/N + (N − 2)/(N − 1) e−t + e−Nt/N/(N − 1)

p3,2(t) = 1/N − e−t /(N − 1) + e−Nt/N/(N − 1).

(13)
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Figure 1. Classical transition probabilities pk,j (t) versus t. The marked points are numerical
results and the curves are analytical predictions in equation (13).

In order to test the analytical predictions, we compare the classical pk,j (t) predicted
by equation (13) with the numerical results obtained by numerically diagonalizing the
Hamiltonian. The results for a star graph of N = 100 are shown in figure 1. As we can
see, the numerical results exactly agree with the analytical prediction in equation (13). The
transport reaches the equal-partitioned distribution 1/N at long times. However, when the
excitation starts at the central node, the transport reaches the equal partition more quickly than
the transport which starts at the leaf nodes (compare the curves in figure 1).

For the quantum transport, we compare the transition probabilities in figure 2. The
numerical results (marked as black squares) exactly agree with the theoretical results in
equations (8)–(11). We note that all the transition probabilities show periodic recurrences.
Comparing π1,1(t) and π2,2(t) (see figure 2(a) and (c)), we find that there are high probabilities
of finding the exciton at the initial node. This suggests that the coherent transport shows high
localizations on the initial nodes [19]. The oscillation amplitudes of the return probabilities
π1,1(t) and π2,2(t) are comparable but the oscillation periods are quite different. The oscillating
period of π2,2(t) is 100 (N) times of that of π1,1(t). This could be interpreted by the analytical
expressions in equations (8) and (10). Similar behavior also holds for π2,1(t) and π3,2(t)

(see figure 2(b) and (d)), but the oscillation amplitude is smaller than the return probabilities.
This also can be understood from the analytical results in equations (9) and (11), where the
transition probability is mainly determined by the high order term of N. The small value of
the oscillating period of π2,1(t) and π1,1(t) suggests that there are frequent revivals when the
exciton starts at the central node, compared to the transport starting at the leaf nodes.

The quantum limiting probabilities in equation (12) are only a function of the graph size
N. Figure 3 shows the quantum limiting probabilities for numerical results and theoretical
predictions. Both the results agree with each other. We find that the return probabilities χ1,1

and χ2,2 are an incremental function of N and approach 1 in the limit N → ∞. In contrast,
χ2,1 and χ3,2 decrease with N and close to 2/N2 in the limit N → ∞. We note that χ1,1 differs
from χ2,2 for small values of N. Such deviation diminishes as N increases. This suggests that
the strength of localizations is almost the same for central-node and leaf-node excitations. The
only difference is that the frequency of revivals (oscillation period) for central-node excitation
is much higher than that for leaf-node excitation.

5
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(a)

(b)

(c)

(d )

Figure 2. Quantum transition probabilities π1,1(t) (a), π2,1(t) (b), π2,2(t) (c) and π3,2(t) (d). The
points denoted by black squares are numerical results and the curves are theoretical predictions in
equations (8)–(11).

(a)

(b)

Figure 3. Long-time limiting probabilities χ1,1, χ2,2 (a) and χ2,1, χ3,2 (b) as a function of the
network size N. The points marked as symbols are numerical results and the curves are analytical
results predicted by equation (12).
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To address the similarities and differences between the star graph and the complete graph,
we proceed to consider the transport on a complete graph of size N. The complete graph
is fully connected, thus the Hamiltonian is given by H = (N − 1)

∑
i |i〉〈i| − ∑

i �=j |i〉〈j |.
The eigenvalues are two different values: E1 = E2 = · · · = EN−1 = N and EN = 0.
One set of non-orthogonal states {|vi〉} corresponding to the eigenvalues can be written as
|vi〉 = |i + 1〉 − |1〉 (i = 1, 2, . . . , N − 1) and |vN 〉 = ∑N

j=1 |j 〉. Using the Gram–Schmidt
orthonormalization (see equation (5)), the orthonormal basis for a complete graph is

|qi〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
i

i + 1
|i + 1〉 −

√
1

i(i + 1)

i∑
j=1

|j 〉, i = 1, 2, . . . , N − 1

√
1/N

N∑
j=1

|j 〉, i = N.

(14)

Substituting the above equation into equation (2), we get the quantum transition probabilities
for the complete graph

πi,j (t) =

⎧⎪⎨
⎪⎩

N2 − 2N + 2

N2
+

2(N − 1)

N2
cos Nt, i = j

2

N2
− 2

N2
cos Nt. i �= j.

(15)

We note that equation (15) has exactly the same form as equations (8) and (9). This
indicates that the transport starting at the central node on a star graph is equivalent to the
transport on a complete graph of the same size.

In summary, we have studied coherent exciton transport of continuous-time quantum
walks on star graphs. Exact analytical results of the transition probabilities are obtained in
terms of the Gram–Schmidt orthonormalization. We find that the coherent transport shows
perfect recurrences and there is a high frequency of revivals for central-node excitation. Study
of long time averages suggests that the quantum transport displays strong localizations on the
initial node. When the initial excitation starts at the central node, the transport on a star graph
is equivalent to the transport on a complete graph of the same size.
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